Galois connections continued
Jul. 15th, 2006 11:40 amКак-то не случилось до сих пор выучить соответствия Галуа. То казалось, что это какая-то скучная тема из теории частичных порядков, а когда говорили, что если рассматривать частичные порядки, как категории, то пара, образующая соответствие Галуа, становиться парой сопряженных функторов, то и вовсе становилось страшно :-) Если бы я раньше понимал, что здесь сразу же возникают ректракции, проекции, и операции замыкания, то я бы это, конечно, давно выучил бы :-)
Yesterday, we've seen that given a Galois connection (F,G), from G(b) ≤A G(b) and a ≤A G(b) ⇒ F(a) ≤B b, one can infer
F(G(b)) ≤B b, (1)
and from F(a) ≤B F(a), and F(a) ≤B b ⇒ a ≤A G(b), one can infer
a ≤A G(F(a)). (2)
In particular, (1) implies that F(G(F(a))) ≤B F(a). Applying monotone function F to the both parts of (2), we also obtain F(a) ≤B F(G(F(a))). Hence
F(G(F(a))) = F(a). (3)
In the symmetric fashion
G(F(G(b))) = G(b). (4)
So F(A) is the set of fixed points and the image of F o G, and G(B) is the set of fixed points and the image of G o F, so F o G and G o F are retractions (a retraction is such a map r from a set to itself, that r o r = r).
Because of (1) retraction F o G is called a projection, and because of (2) retraction G o F is called a closure operation.
Yesterday, we've seen that given a Galois connection (F,G), from G(b) ≤A G(b) and a ≤A G(b) ⇒ F(a) ≤B b, one can infer
F(G(b)) ≤B b, (1)
and from F(a) ≤B F(a), and F(a) ≤B b ⇒ a ≤A G(b), one can infer
a ≤A G(F(a)). (2)
In particular, (1) implies that F(G(F(a))) ≤B F(a). Applying monotone function F to the both parts of (2), we also obtain F(a) ≤B F(G(F(a))). Hence
F(G(F(a))) = F(a). (3)
In the symmetric fashion
G(F(G(b))) = G(b). (4)
So F(A) is the set of fixed points and the image of F o G, and G(B) is the set of fixed points and the image of G o F, so F o G and G o F are retractions (a retraction is such a map r from a set to itself, that r o r = r).
Because of (1) retraction F o G is called a projection, and because of (2) retraction G o F is called a closure operation.